Search results for "Spin Hall effect"

showing 10 items of 48 documents

Importance of spin current generation and detection by spin injection and the spin Hall effect for lateral spin valve performance.

2018

Lateral spin valves are attractive device geometries where functional spin currents can be generated and detected by various mechanisms, such as spin injection and the direct and the inverse spin Hall effect. To understand the mechanisms behind these effects better, as well as their potential for application in devices, we combine multiple mechanisms in multi-terminal Pt-Py-Cu lateral spin valves: we generate pure spin currents in the copper spin conduit both via the spin Hall effect in platinum and electric spin injection from permalloy and detect signals both via conventional non-local detection and via the inverse spin Hall effect in the same device at variable temperatures. Differences …

PermalloyMaterials scienceCondensed matter physics530 PhysicsSpin valve02 engineering and technologySpin current530 Physik021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0103 physical sciencesSpin Hall effectCondensed Matter::Strongly Correlated ElectronsGeneral Materials ScienceCurrent (fluid)010306 general physics0210 nano-technologySpin injectionSpin-½Journal of physics. Condensed matter : an Institute of Physics journal
researchProduct

Thickness and power dependence of the spin-pumping effect inY3Fe5O12/Pt heterostructures measured by the inverse spin Hall effect

2015

The dependence of the spin-pumping effect on the yttrium iron garnet $({\mathrm{Y}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$, YIG) thickness detected by the inverse spin Hall effect (ISHE) has been investigated quantitatively. Due to the spin-pumping effect driven by the magnetization precession in the ferrimagnetic insulator ${\mathrm{Y}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$ film a spin-polarized electron current is injected into the Pt layer. This spin current is transformed into electrical charge current by means of the ISHE. An increase of the ISHE voltage with increasing film thickness is observed and compared to the theoretically expected behavior. The effective damping parameter of t…

PhysicsSpin pumpingCondensed matter physicsScatteringYttrium iron garnetInverseCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsMagnetizationchemistry.chemical_compoundchemistryFerrimagnetismSpin waveSpin Hall effectPhysical Review B
researchProduct

Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20

2018

Identifying materials with an efficient spin-to-charge conversion is crucial for future spintronic applications. In this respect, the spin Hall effect is a central mechanism as it allows for the interconversion of spin and charge currents. Spintronic material research aims at maximizing its efficiency, quantified by the spin Hall angle and the spin-current relaxation length . We develop an all-optical contact-free method with large sample throughput that allows us to extract and . Employing terahertz spectroscopy and an analytical model, magnetic metallic heterostructures involving Pt, W and Cu80Ir20 are characterized in terms of their optical and spintronic properties. The validity of our …

Materials scienceAcoustics and Ultrasonics530 Physicsterahertz emission spectroscopyFOS: Physical sciences02 engineering and technology01 natural sciencesTransition metalHall effect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)ultrafast spincaloritronics010306 general physicsSpectroscopyComputingMilieux_MISCELLANEOUSterahertz emission spectroscopy; terahertz transmission spectroscopy; ultrafast spintronics; ultrafast spincaloritronicsCondensed Matter - Materials ScienceSpintronicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryRelaxation (NMR)Refractory metalsMaterials Science (cond-mat.mtrl-sci)621021001 nanoscience & nanotechnologyCondensed Matter Physics530 PhysikCondensed Matter::Mesoscopic Systems and Quantum Hall Effect3. Good healthSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsTerahertz spectroscopy and technologyterahertz transmission spectroscopyultrafast spintronicsSpin Hall effect[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Optoelectronics0210 nano-technologybusiness
researchProduct

Quantifying the inverse spin-Hall effect in highly doped PEDOT:PSS

2020

The authors provide experimental results that show the onset of the Nernst effect, thermovoltages and an inverse spin-Hall effect in the polymer PEDOT:PSS. Specifically, the observed inverse spin-Hall effect appears to be smaller than other measurements, but in better agreement with theoretical calculations.

chemistry.chemical_classificationMaterials scienceCondensed matter physicsDopingInverse02 engineering and technologyPolymerCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencessymbols.namesakechemistryPEDOT:PSS0103 physical sciencessymbolsSpin Hall effect010306 general physics0210 nano-technologyNernst effectPhysical Review Research
researchProduct

Non-Markovian dynamics of a single electron spin coupled to a nuclear spin bath

2008

We apply the time-convolutionless (TCL) projection operator technique to the model of a central spin which is coupled to a spin bath via nonuniform Heisenberg interaction. The second-order results of the TCL method for the coherences and populations of the central spin are determined analytically and compared with numerical simulations of the full von Neumann equation of the total system. The TCL approach is found to yield an excellent approximation in the strong field regime for the description of both the short-time dynamics and the long time behavior.

PhysicsQuantum PhysicsQuantum decoherenceQuantum dynamicsFOS: Physical sciencesQuantum entanglementCondensed Matter PhysicsSpin quantum numberElectronic Optical and Magnetic MaterialsOpen quantum systemspin systems non-Markovian dynamicsQuantum spin Hall effectQuantum electrodynamicsQuantum mechanicsQuantum spin liquidSpin (physics)Quantum Physics (quant-ph)
researchProduct

Evidence for phonon skew scattering in the spin Hall effect of platinum

2018

We measure and analyze the effective spin Hall angle of platinum in the low-residual resistivity regime by second-harmonic measurements of the spin-orbit torques for a multilayer of $\mathrm{Pt}|\mathrm{Co}|{\mathrm{AlO}}_{x}$. An angular-dependent study of the torques allows us to extract the effective spin Hall angle responsible for the damping-like torque in the system. We observe a strikingly nonmonotonic and reproducible temperature dependence of the torques. This behavior is compatible with recent theoretical predictions which include both intrinsic and extrinsic (impurities and phonons) contributions to the spin Hall effect at finite temperatures.

PhysicsCondensed matter physics530 PhysicsPhononScatteringddc:530chemistry.chemical_element02 engineering and technology530 PhysikCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesMeasure (mathematics)chemistryImpurityElectrical resistivity and conductivity0103 physical sciencesSpin Hall effectddc:530Condensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyPlatinumSpin-½Physical Review B
researchProduct

Giant enhancement to spin battery effect in superconductor/ferromagnetic insulator systems

2021

We develop a theory of the spin battery effect in superconductor/ferromagnetic insulator (SC/FI) systems taking into account the magnetic proximity effect. We demonstrate that the spin-energy mixing enabled by the superconductivity leads to the enhancement of spin accumulation by several orders of magnitude relative to the normal state. This finding can explain the recently observed giant inverse spin Hall effect generated by thermal magnons in the SC/FI system. We suggest a nonlocal electrical detection scheme which can directly probe the spin accumulation driven by the magnetization dynamics. We predict a giant Seebeck effect converting the magnon temperature bias into the nonlocal voltag…

PhysicsSuperconductivityMagnetization dynamicsCondensed matter physicsOrders of magnitude (temperature)Magnon02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesFerromagnetism0103 physical sciencesSpin Hall effectProximity effect (superconductivity)Condensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologySpin-½Physical Review B
researchProduct

Spin accumulation from nonequilibrium first principles methods

2021

For the technologically relevant spin Hall effect, most theoretical approaches rely on the evaluation of the spin-conductivity tensor. In contrast, for most experimental configurations the generation of spin accumulation at interfaces and surfaces is the relevant quantity. Here, we directly calculate the accumulation of spins due to the spin Hall effect at the surface of a thin metallic layer, making quantitative predictions for different materials. Two distinct limits are considered, both relying on a fully relativistic Korringa-Kohn-Rostoker density functional theory method. In the semiclassical approach, we use the Boltzmann transport formalism and compare it directly with a fully quantu…

PhysicsCondensed Matter - Materials ScienceCondensed matter physicsSpinsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesNon-equilibrium thermodynamicsSemiclassical physicscond-mat.mtrl-sciKeldysh formalismCondensed Matter - Other Condensed Mattercond-mat.otherSpin Hall effectDensity functional theoryTensorOther Condensed Matter (cond-mat.other)Spin-½Physical Review B
researchProduct

Electric control of the spin Hall effect by intervalley transitions

2013

Controlling spin-related material properties by electronic means is a key step towards future spintronic technologies. The spin Hall effect (SHE) has become increasingly important for generating, detecting and using spin currents, but its strength-quantified in terms of the SHE angle-is ultimately fixed by the magnitude of the spin-orbit coupling (SOC) present for any given material system. However, if the electrons generating the SHE can be controlled by populating different areas (valleys) of the electronic structure with different SOC characteristic the SHE angle can be tuned directly within a single sample. Here we report the manipulation of the SHE in bulk GaAs at room temperature by m…

Electronic structureSpin currentsSpin Hall effectElectronElectronic structureCrystal symmetrySpin-polarized electronsElectron populationGallium arsenideQuantum mechanicsGeneral Materials ScienceSemiconducting galliumStrength of materials0912 Materials EngineeringRoom temperatureSpin-½Intervalley transitionPhysicsCouplingElectromotive forceCondensed matter physicsSpintronicsMechanical EngineeringMaterial systemsGeneral ChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsElectric controlHeavy metalsMechanics of MaterialsSpin Hall effectSpin-orbit couplingsMaterial propertiesNature Materials
researchProduct

Pfaffian and fragmented states atν=52in quantum Hall droplets

2008

When a gas of electrons is confined to two dimensions, application of a strong magnetic field may lead to startling phenomena such as emergence of electron pairing. According to a theory this manifests itself as appearance of the fractional quantum Hall effect with a quantized conductivity at an unusual half-integer v=5/2 Landau level filling. Here we show that similar electron pairing may occur in quantum dots where the gas of electrons is trapped by external electric potentials into small quantum Hall droplets. However, we also find theoretical and experimental evidence that, depending on the shape of the external potential, the paired electron state can break down, which leads to a fragm…

PhysicsCondensed matter physicsQuantum point contactMacroscopic quantum phenomenaQuantum Hall effectCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsElectronic Optical and Magnetic Materialssymbols.namesakePauli exclusion principleQuantum spin Hall effectQuantum mechanicsComposite fermionPrincipal quantum numberFractional quantum Hall effectsymbolsPhysical Review B
researchProduct